On the Ramsey numbers for paths and generalized Jahangir graphs Js,m
نویسندگان
چکیده
For given graphs G and H, the Ramsey number R(G, H) is the least natural number n such that for every graph F of order n the following condition holds: either F contains G or the complement of F contains H. In this paper, we determine the Ramsey number of paths versus generalized Jahangir graphs. We also derive the Ramsey number R(tPn, H), where H is a generalized Jahangir graph Js,m where s ≥ 2 is even, m ≥ 3 and t ≥ 1 is any integer.
منابع مشابه
M ay 2 00 8 On the Ramsey numbers for paths and generalized Jahangir graphs
For given graphs G and H, the Ramsey number R(G,H) is the least natural number n such that for every graph F of order n the following condition holds: either F contains G or the complement of F contains H. In this paper, we determine the Ramsey number of paths versus generalized Jahangir graphs. We also derive the Ramsey number R(tPn,H), where H is a generalized Jahangir graph Js,m where s ≥ 2 ...
متن کاملOn the Ramsey Numbers for a Combination of Paths and Jahangirs
For given graphs G and H, the Ramsey number R(G, H) is the least natural number n such that for every graph F of order n the following condition holds: either F contains G or the complement of F contains H. In this paper, we improve the Surahmat and Tomescu’s result [9] on the Ramsey number of paths versus Jahangirs. We also determine the Ramsey number R(∪G, H), where G is a path and H is a Jah...
متن کاملThe Ramsey numbers of large trees versus wheels
For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.
متن کاملRamsey Numbers of K M versus (n; K)-graphs and the Local Density of Graphs Not Containing a K M
In this paper generalized Ramsey numbers of complete graphs K m versus the set h; n; ki of (n; k)-graphs are investigated. The value of r(K m ; hn; ki) is given in general for (relative to n) values of k small compared to n using a correlation with Turr an numbers. These generalized Ramsey numbers can be used to determine the local densities of graphs not containing a subgraph K m .
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کامل